

PC (polycarbonate) FDM

A true industrial thermoplastic, PC (polycarbonate) is widely used in automotive, aerospace, medical and many other applications. PC offers accuracy, durability and stability, creating strong parts that withstand functional testing. A PC part manufactured on a Fortus® 3D Printer is 5 to 60 percent stronger than a part made on previous FDM® systems. It also has superior mechanical properties to ABS and a number of other thermoplastics. When combined with a Fortus 3D Printer, PC gives you strong parts for conceptual modeling, functional prototyping, manufacturing tools, and production parts.

MECHANICAL PROPERTIES ¹	TEST METHOD	ENGLISH		METRIC	
		XZ Axis	ZX Axis	XZ Axis	ZX Axis
Tensile Strength, Yield (Type 1, 0.125", 0.2"/min)	ASTM D638	5,800 psi	4,300 psi	40 MPa	30 MPa
Tensile Strength, Ultimate (Type 1, 0.125", 0.2"/min)	ASTM D638	8,300 psi	6,100 psi	57 MPa	42 MPa
Tensile Modulus (Type 1, 0.125", 0.2"/min)	ASTM D638	282,000 psi	284,000 psi	1,944 MPa	1,958 MPa
Tensile Elongation at Break (Type 1, 0.125", 0.2"/min)	ASTM D638	4.8%	2.5%	4.8%	2.5%
Tensile Elongation at Yield (Type 1, 0.125", 0.2"/min)	ASTM D638	2.2%	2%	2.2%	2%
Flexural Strength (Method 1, 0.05"/min)	ASTM D790	13,000 psi	9,900 psi	89 MPa	68 MPa
Flexural Modulus (Method 1, 0.05"/min)	ASTM D790	291,000 psi	261,000 psi	2,006 MPa	1,800 MPa
Flexural Strain at Break (Method 1, 0.05"/min)	ASTM D790	No break	4%	No break	4%
IZOD Impact, notched (Method A, 23 °C)	ASTM D256	1.4 ft-lb/in	0.5 ft-lb/in	73 J/m	28 J/m
IZOD Impact, un-notched (Method A, 23 °C)	ASTM D256	16.4 ft-lb/in	3.5 ft-lb/in	877 J/m	187 J/m
Compressive Strength, Yield (Method 1, 0.05"/min)	ASTM D695	10,000 psi	9,200 psi	69 MPa	64 MPa
Compressive Strength, Ultimate (Method 1, 0.05"/min)	ASTM D695	28,000 psi	9,400 psi	193 MPa	65 MPa
Compressive Modulus (Method 1, 0.05"/min)	ASTM D695	1,100,000 psi	227,000 psi	7,564 MPa	1,565 MPa

THERMAL PROPERTIES ²	TEST METHOD	ENGLISH	METRIC
Heat Deflection (HDT) @ 66 psi	ASTM D648	280 °F	138 °C
Heat Deflection (HDT) @ 264 psi	ASTM D648	261 °F	127 °C
Vicat Softening	ASTM D1525	282 °F	139 °C
Glass Transition (Tg)	DMA (SSYS)	322 °F	161 °C
Melting Point		Not Applicable ³	Not Applicable ³

PRODUCTION-GRADE FDM THERMOPLASTIC FROM GoProto

At the core: Advanced FDM Technology

FDM (fused deposition modeling) technology works with engineering-grade thermoplastics to build strong, long-lasting and dimensionally stable parts with the best accuracy and repeatability of any 3D printing technology. These parts are tough enough to be used as advanced conceptual models, functional prototypes, manufacturing tools and production parts.

ELECTRICAL PROPERTIES ⁴	TEST METHOD	VALUE RANGE
Volume Resistivity	ASTM D257	6.0x10 ¹³ - 2.0x10 ¹⁴ ohm-cm
Dielectric Constant	ASTM D150-98	2.8 - 3.0
Dissipation Factor	ASTM D150-98	.00050006
Dielectric Strength	ASTM D149-09, Method A	80 - 360 V/mil

OTHER ²	TEST METHOD	VALUE
Specific Gravity	ASTM D792	1.2
Coefficient of Thermal Expansion	ASTM E831	3.8x10 ⁻⁰⁵ in/in/°F
Rockwell Hardness	ASTM D785	R115

SYSTEM AVAILABILITY	LAYER THICKNESS CAPABILITY	SUPPORT STRUCTURE	AVAILABLE COLORS
Fortus 450mc™	0.010 inch (0.254 mm)	Breakaway,	
Tortus 430mc	0.010 men (0.234 mm)	Dieakaway,	White
		Soluble	

The information presented are typical values intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. End-use material performance can be impacted (+/-) by, but not limited to, part design, end-use conditions, test conditions, etc. Actual values will vary with build conditions. Tested parts were built on Fortus 400mc™ @ 0.010" (0.254 mm) slice. Product specifications are subject to change without notice.

The performance characteristics of these materials may vary according to application, operating conditions, or end use. Each user is responsible for determining that the Stratasys material is safe, lawful, and technically suitable for the intended application, as well as for identifying the proper disposal (or recycling) method consistent with applicable environmental laws and regulations. Stratasys makes no warranties of any kind, express or implied, including, but not limited to, the warranties of merchantability, fitness for a particular use, or warranty against patent infringement.

¹Build orientation is on side long edge.

²Literature value unless otherwise noted.

XZ = X or "on edge"

XY = Y or "flat"ZX = or "upright"

³Due to amorphous nature, material does not display a melting point.

4All Electrical Property values were generated from the average of test plaques built with default part density (solid). Test plaques were 4.0 x 4.0 x 0.1 inches (102 x 102 x 2.5 mm) and were built both in the flat and vertical orientation. The range of values is mostly the result of the difference in properties of test plaques built in the flat vs. vertical orientation.

Orientation: See Stratasys Testing white paper for more detailed description of build orientations.

GoProto, Inc. quotes@GoProto.com | GoProto.com +1-888-GoProto (467-7686)

Oregon (Headquarters): 10250 SW Greenburg Rd # 201, Portland, OR 97223

California: 3940 Ruffin Rd. Suite A, San Diego, CA 92123

+1-888-467-7686 | Fax 503-200-1373

Australia: 12-14 Ricketts Rd, Mount Waverley, Victoria, Australia, 3149 +61-1300-1400-55

sales@goproto.com.au

Upright (ZX)
On-Edge (XZ)
Flat (XY)